Tag Archives: motor custom

China Custom Ms Cheaper 3HP 4HP 1/3HP 5.5HP 10HP Three-Phase Synchronous Motor Ie1 Ie2 Ie3 vacuum pump oil

Product Description

1. MS series electric motors adopt the latest design and high quality material. MS series motors are conform to the IEC standard in function, appearance, output and other requirements.

2. The efficiency of MS series motors meet EFF2 standard in E. U., and can reach the EFF1 standard if requested.

3. MS series motors have a lot of advantages including high, energy saving, low noise, little vibration, light weight, small volume, reliable operation, up-to-date appearance, convenient operation and maintenance.

Warranty: 1 Year (according to our general sales conditions)
If you need more information about this series, please feel free to contact us.

TYPE Output (kW) Volt(V) Current (A) Speed(r/min) Eff(%) Power Factor Tstart/Tn Tmax/Tn Ist/In Weight(kg)
MS561-2 0.09 220/380 0.57/0.33 2800 62 0.68 2.3 2.4 6 4.6
MS562-2 0.12 220/380 0.67/0.38 2800 67 0.71 2.3 2.4 6 4.8
MS631-2 0.18 220/380 0.91/0.53 2800 69 0.75 2.2 2.4 6 5
MS632-2 0.25 220/380 1.17/1.68 2800 72 0.78 2.2 2.4 6 5.3
MS711-2 0.37 220/380 1.65/0.95 2800 74 0.8 2.2 2.4 6 6.5
MS712-2 0.55 220/380 2.33/1.35 2800 76 0.82 2.2 2.4 6 7
MS801-2 0.75 220/380 3.03/1.75 2800 77 0.85 2.2 2.4 6 9.5
MS802-2 1.1 220/380 4.42/2.55 2800 77 0.85 2.2 2.4 6 11
MS90S-2 1.5 220/380 6.01/3.84 2800 77 0.85 2.2 2.4 6 14.5
MS90L-2 2.2 220/380 8.61/4.98 2800 78 0.86 2.2 2.4 6 17
MS100L-2 3 220/380 11.1/6.4 2870 82 0.87 2.2 2.3 7 24.5
MS112M-2 4 380/660 8.2/4.7 2890 86 0.87 2.2 2.3 7 30
MS132S1-2 5.5 380/660 11/6.3 2900 86 0.88 2 2.2 7 42
MS132S2-2 7.5 380/660 15/8.6 2900 86 0.88 2 2.2 7 50
MS561-4 0.06 220/380 0.49/0.28 1400 56 0.58 2.3 2.4 6 4.6
MS562-4 0.09 220/380 0.67/0.39 1400 58 0.61 2.3 2.4 6 4.8
MS631-4 0.12 220/380 0.84/0.48 1400 60 0.63 2.2 2.4 6 4.8
MS632-4 0.18 220/380 1.12/0.65 1400 64 0.66 2.2 2.4 6 5
MS711-4 0.25 220/380 1.44/0.83 1400 67 0.68 2.2 2.4 6 6.3
MS712-4 0.37 220/380 1.94/1.12 1400 70 0.72 2.2 2.4 6 7
MS801-4 0.55 220/380 2.69/1.56 1400 74 0.73 2.2 2.4 6 9.5
MS802-4 0.75 220/380 3.48/2.01 1400 76 0.75 2.2 2.4 6 11
MS90S-4 1.1 220/380 4.74/2.75 1400 78 0.78 2.2 2.4 6 14.5
MS90L-4 1.5 220/380 6.31/3.65 1400 79 0.79 2.2 2.4 6 16
MS100L1-4 2.2 220/380 8.6/5.0 1430 81 0.82 2.2 2.3 7 23
MS100L2-4 3 220/380 11.7/6.8 1430 83 0.81 2.2 2.3 7 27
MS112M-4 4 380/660 8.8/5.1 1440 85 0.82 2.2 2.3 7 33.5
MS132S-4 5.5 380/660 12/6.9 1440 86 0.84 2.2 2.2 7 49.5
MS132M-4 7.5 380/660 15/8.6 1440 87 0.85 2.2 2.2 7 57.5
MS90S-6 0.75 220/380 4.0/2.3 910 73 0.7 2.2 2.2 5.5 14.5
MS90L-6 1.1 220/380 5.5/3.2 910 74 0.72 2.2 2.2 5.5 17
MS100L-6 1.5 220/380 6.9/4.0 940 78 0.74 2.2 2.2 6 22.5
MS112M-6 2.2 220/380 9.7/5.6 940 81 0.74 2.2 2.2 6 29
MS132S-6 3 220/380 12.4/7.2 960 83 0.76 2 2 6.5 48
MS132M1-6 4 380/660 9.4/5.4 960 84 0.77 2 2 6.5 49
MS132M2-6 5.5 380/660 13/7.5 960 85 0.78 2 2 6.5 57.5

SPARE PARTS:

PACKING WAYS

FACTROY VIEW

FAQ

Q: Do you offer OEM service?

A: Yes

Q: What is your payment term?

A: 30% T/T in advance, 70% balance when receiving B/L copy.  Or irrevocable L/C.

Q: What is your lead time?

A: About 30 days after receiving deposit or original L/C.

Q: What certifiicates do you have?

A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

China Custom Ms Cheaper 3HP 4HP 1/3HP 5.5HP 10HP Three-Phase Synchronous Motor Ie1 Ie2 Ie3   vacuum pump oil	China Custom Ms Cheaper 3HP 4HP 1/3HP 5.5HP 10HP Three-Phase Synchronous Motor Ie1 Ie2 Ie3   vacuum pump oil
editor by CX 2024-03-27

China Custom ZD 62mm Brush/Brushless Spur Gear Precision Planetary Transmission Gear Motor brushless motor

Product Description

ZD 62mm Brush/Brushless Spur Gear Precision Planetary Transmission Gear Motor

Detailed Photos

 

 

Product Parameters

MODEL:Z62BLDPN2460-30S(62PN6.55K)

Other Related Products

 

Click Here For More Details

 

Company Profile

 

FAQ

Q: What’re your main products?

A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you !
 

Application: Motor, Electric Cars
Function: Change Drive Torque, Speed Changing
Layout: Transmission
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Customization:
Available

|

Customized Request

Motor

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China Custom ZD 62mm Brush/Brushless Spur Gear Precision Planetary Transmission Gear Motor   brushless motor	China Custom ZD 62mm Brush/Brushless Spur Gear Precision Planetary Transmission Gear Motor   brushless motor
editor by CX 2023-06-13

China factory Custom Made 12V/24V Electric Planetary Gear DC Motor with Good quality

Product Description

 

Basic information
Product name PG25370123-8004
 

FAQ:

Q:1.What kind of motors you can provide?

A: For now, we mainly provide planetary gear box; dc motors (including brush and brushless) with diameter range in 16~60mm and also Dia10~80mm size gear motors.

Q:2. Can you send me a price list?

A: For all of our motors, they are customized based on different requirements like lifetime, noise, voltage, and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3. What’s the lead time for regular order?

A: For orders, the standard lead time is 30-35 days and this time can be shorter or longer based on different model, period and quantity.

Q:4. Is it possible for you to develop new motors if we can provide tooling cost?

A: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q:5. Can I get some samples?

A: It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there is no further needs. If just sample testing before the official order and our MOQ, price and other terms are acceptable, we’d love to provide samples.

 

Application: Motor, Motorcycle, Machinery, Toy, Agricultural Machinery, Car
Function: Distribution Power, Change Drive Torque, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China factory Custom Made 12V/24V Electric Planetary Gear DC Motor   with Good qualityChina factory Custom Made 12V/24V Electric Planetary Gear DC Motor   with Good quality
editor by CX 2023-06-01

China Custom High Torque 380V AC Planetary Gear Motor brushless motor

Product Description

Product Description

HPS is a leading manufacturer and supplier of planetary gearbox and gear motor in China, Our company covers an area of 6 pcs. Meanwhile, all 6 production lines strictly comply with ISO 9001 and CE to control the quality. wide-range series products have been exported to 30+ countries all over the world. 
Besides, we are making great efforts to customize and provide complete solutions to meet different clients’ requirements and market. Our R&D team has 15 years experience in this field, makes our company honored with many invention patents and utility patents,  which makes CZPT the most trustable and reliable manufacturer.

No Model AC380.24.500
1 Stages 4
2 Ratio 1093.5:1
3 Rated Output Torque 500 Nm
4 Max Output Torque 700 Nm
5 Rated Output Speed 2.4 rpm
6 Rated Current 1.7A
7 Rated Voltage AC 380V
8 Noise ≤60dB
9 Temperature -40-80ºC

Successful Projects

Exhibition

HPS attends 5-6 exhibitions every year, both solar PV exhibitions and automation industry exhibitions, professional sales team and quality products build CZPT a good reputation in the market.

Production & Test Equipments

Certifications

Packaging & Shipping

FAQ

Q1:Which areas are your products mainly used in?

A:At present, we have 2 main products: precision planetary gear reducer and solar geared motor. Most of the precision planetary reducers are used in automation fields, such as medical equipment, 3D printers, door openers, tapping machines, CNC lathes and a series of automation equipment. In addition, our solar geared motors are used in photovoltaic power generation projects, which are mainly combined with rotary drives to drive solar panels to track sunlight.
Q2: How to choose the suitable planetary gearbox?
A :First of all, we need you to be CZPT to provide relevant parameters. If you have a motor drawing, it will let us recommend a suitable gearbox for you faster. If not, we hope you can provide the following motor parameters: output speed, output torque, voltage, current, IP, noise, operating conditions, motor size and power, etc.
Q3: What is the price ?
A : The main determining factor for the price of each product is the order volume. You can communicate with us and let us understand each other. I believe that our prices, product quality and our services can definitely make you satisfied.

Q4: Do you provide customized service?

A: Yes, we provide customized services. You only need to put forward your needs, and we will do our best to provide you with a plan, make plans, and try our best to meet your needs.

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 160/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China Custom High Torque 380V AC Planetary Gear Motor   brushless motor	China Custom High Torque 380V AC Planetary Gear Motor   brushless motor
editor by CX 2023-05-25

China Custom NEMA 17 Planetary Gearbox Stepper Motor 42hsp with Facyory Price dc motor

Product Description

NEMA 17 gearbox stepping motor, NEMA17 planetary gearbox stepper motor, 42MM spur gearbox stepper motor, nema17 geared stepper motor

Place of Origin: HangZhou, China
Brand Name: JK
Model Number: JK42HSG
Certification: CE, ROHS, ISO9pcs/month

Descrition:

NEMA17 gearbox stepping motor, 42mm square stepper motor.
42mm planetary gearbox motor,

Applications:

Use for robots stepper motor, electronic automatic equipment stepping motor, medical instrument stepping motor,
Advertisementing instrument stepper motor, lighting& audio equipment stepper motor, printer stepper motor, textile machinery stepper motor.
Cnc router stepper motor.

Specifications:

Gearbox Specifications

Ratio 5: 1 / 10: 1
Permissible Speed rpm 0~350 / 0~180
Length(L) mm 26.5 / 26.5
Peak Torque 4kg. Cm / 6kg. Cm
Backlash at Noload 4 deg / 3 deg
 

Model No. Step Angle Motor Length Current
/Phase
Resistance
/Phase
Inductance
/Phase
Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm Kg
JK42HS34-1334 1.8 34 1.33 2.1 2.5 2.2 4 120 34 0.22
JK42HS40-1206 1.8 40 1.2 3.3 3.2 2.6 6 150 54 0.28
JK42HS40-1684 1.8 40 1.68 1.65 3.2 3.6 4 150 54 0.28
JK42HS48-0406 1.8 48 0.4 30 25 3.17 6 260 68 0.35
JK42HS48-1684 1.8 48 1.68 1.65 2.8 4.4 4 260 68 0.35

 

Application: Printing Equipment
Speed: Variable Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control
Number of Poles: Other
Customization:
Available

|

Customized Request

Motor

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China Custom NEMA 17 Planetary Gearbox Stepper Motor 42hsp with Facyory Price   dc motor	China Custom NEMA 17 Planetary Gearbox Stepper Motor 42hsp with Facyory Price   dc motor
editor by CX 2023-05-23

China Custom Permanent Magnet 42mm DC planetary gear motor for power tools motor efficiency

Product Description

Permanent Magnet 42mm DC planetary gear motor for power tools

Main Features
1.OEM/ODM 42mm planetary gearbox plups7 series dc motor and 42mm brushless motor
2.Small size dc gear motor with low speed and big torque
3.42mm gear motor provide 10.0Nm torque and more reliable
4.Suitable to small diameter, low noise and big torque application
5.Dc Gear motors can match encoder,11ppr
6.Reduction ratio:4,14,19,27,51,71,100,139,189,264,369,516,720
 

Motor model no. Rated voltage No-load speed No-load current Rated speed Rated torque Rated current Output power Stall torque Stall current
VDC r/min A r/min g.cm A W g.cm A
TRS-775PM-2460 24 6000 0.3 4500 900 2.3 40 3600 7.2
TRS-775PM-0648 6 4800 1.2 3600 900 8.7 33 3600 32
TRS-775PM-1246 12 4600 0.6 3470 900 4.4 32 3600 16

Gear motor technical data : GMP42-775PM-2460-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1400 295 110 58 42 32 23 16 11.5 8.3
Rated speed  rpm 1125 235 88 45 32 24 18 14 10.5 8
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Gear motor technical data : GMP42-775PM-0648-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1150 240 92 46 35 25 18 13 9.3 6.6
Rated speed  rpm 900 190 71 36 26 19 14 11 8.5 6.0
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Gear motor technical data : GMP42-775PM-1246-xxx

Reduction ratio 4 19 51 100 139 189 264 369 516 720
Length  mm 31.5 42 52 52 52 62 62 62 62 62
No-load speed  rpm 1100 220 86 44 32 24 17 12 8.7 6.3
Rated speed  rpm 870 185 69 35 25 19 14 10.5 8.2 5.7
Rated torque  kg.cm 2.8 13 26 51 71 89 100 100 100 100
Max.momentary tolerance torque  kg.cm 11 54 110 216 300 300 300 300 300 300

Product Application

Other Applications:
Business Machines: ATM, Copiers and Scanners, Currency Handling, Point of Sale, Printers, Vending Machines.
Food and Beverage: Beverage Dispensing, Hand Blenders, Blenders, Mixers, Coffee Machines, Food Processors, Juicers, Fryers, Ice Makers, Soy Bean Milk Makers.
Home Entertainment and Gaming: Gaming Machines, Video Games, Optical Disk Drives, RC and Power Toys.
Home Technologies: Home Ventilation, Air Purifiers and Dehumidifiers, Range Hoods, Washers and Dryers, Refrigerators, Dishwashers, Floor Care, Whirlpool and Spa, Showers, Smart Metering, Coffee Machines.
Lawn and Garden: Lawn Mowers, Snow Blowers, Trimmers, Leaf Blowers.
Personal Care: Hair Cutting, Hair Care, Massagers.
Power Tools: Drills and Drivers, Sanders, Grinders, Polishers, Saws.
Camera and Optical: Video, Cameras, Projectors.

 


 

Related Products

Packing & Delivery
Packaging: single carton packing, 100 pieces per box.
Shipping time
:
DHL: 3-5 working days ;
UPS: 5-7 working days;
TNT: 5-7 working days;
FedEx: 7-9 working days;
EMS: 12-15 working days;
By Sea: Depends on which country

Our Company

 

TT Motor (HK) Industrial Co., Ltd has been specializing in micro motors, gear motors and their respective parts since 2000.
Our products are widely used in entertainment systems, automobiles, home and industrial appliances and tools and many others. Our products are dependable and long-lasting, and backed by years of experience. We export 98% of our output worldwide. 
By leveraging our hard-won reputation for honesty, dependability and quality, TT Motor aims to continue as a pioneer in the sales overseas by seeking global partners. If your company is an end-user of micro-motors, a distributor or an agent, please contact us. We look forward to being CZPT to work together with you in the near future.

Certifications

FAQ

Q: How to order?
A: send us inquiry → receive our quotation → negotiate details → confirm the sample → sign contract/deposit → mass production → cargo ready → balance/delivery → further cooperation.
Q: How about Sample order?
A: Sample is available for you. please contact us for details. Contact us
Q: Which shipping way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Post,Sea are available.The other shipping ways are also available, please contact us if you need ship by the other shipping way. 
Q: How long is the deliver?
A: Devliver time depends on the quantity you order. usually it takes 15-25 working days.
Q: My package has missing products. What can I do?
A: Please contact our support team and we will confirm your order with the package contents.We apologize for any inconveniences. 
Q: How to confirm the payment?
A: We accept payment by T/T, PayPal, the other payment ways also could be accepted,Please contact us before you pay by the other payment ways. Also 30-50% deposit is available, the balance money should be paid before shipping.

Application: Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 33/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

The Benefits of Using a Gear Motor

A gear motor works on the principle of conservation of angular momentum. As the smaller gear covers more RPM and the larger gear produces more torque, the ratio between the two is greater than one. Similarly, a multiple gear motor follows the principle of energy conservation, with the direction of rotation always opposite to the one that is adjacent to it. It’s easy to understand the concept behind gear motors and the various types available. Read on to learn about the different types of gears and their applications.

Electric motor

The choice of an electric motor for gear motor is largely dependent on the application. There are various motor and gearhead combinations available, and some are more efficient than others. However, it is critical to understand the application requirements and select a motor that meets these needs. In this article, we’ll examine some of the benefits of using a gear motor. The pros and cons of each type are briefly discussed. You can buy new gear motors at competitive prices, but they aren’t the most reliable or durable option for your application.
To determine which motor is best for your application, you’ll need to consider the load and speed requirements. A gear motor’s efficiency (e) can be calculated by taking the input and output values and calculating their relation. On the graph below, the input (T) and output (P) values are represented as dashed lines. The input (I) value is represented as the torque applied to the motor shaft. The output (P) is the amount of mechanical energy converted. A DC gear motor is 70% efficient at 3.75 lb-in / 2,100 rpm.
In addition to the worm gear motor, you can also choose a compact DC worm gear motor with a variable gear ratio from 7.5 to 80. It has a range of options and can be custom-made for your specific application. The 3-phase AC gear motor, on the other hand, works at a rated power of one hp and torque of 1.143.2 kg-m. The output voltage is typically 220V.
Another important factor is the output shaft orientation. There are two main orientations for gearmotors: in-line and offset. In-line output shafts are most ideal for applications with high torque and short reduction ratios. If you want to avoid backlash, choose a right angle output shaft. An offset shaft can cause the output shaft to become excessively hot. If the output shaft is angled at a certain angle, it may be too large or too small.

Gear reducer

A gear reducer is a special kind of speed reducing motor, usually used in large machinery, such as compressors. These reducers have no cooling fan and are not designed to handle heavy loads. Different purposes require different service factors. For instance, a machine that requires frequent fast accelerations and occasional load spikes needs a gear reducer with a high service factor. A gear reducer that’s designed for long production shifts should be larger than a machine that uses it for short periods of time.
A gear reducer can reduce the speed of a motor by a factor of two. The reduction ratio changes the rotation speed of the receiving member. This change in speed is often required to solve problems of inertia mismatch. The torque density of a gear reducer is measured in newton meters and will depend on the motor used. The first criterion is the configuration of the input and output shafts. A gear ratio of 2:1, for example, means that the output speed has been cut in half.
Bevel gear reducers are a good option if the input and output shafts are perpendicular. This type is very robust and is perfect for situations where the angle between two axes is small. However, bevel gear reducers are expensive and require constant maintenance. They are usually used in heavy-duty conveyors and farm equipment. The correct choice of gear reducer for gear motor is crucial for the efficiency and reliability of the mechanism. To get the best gear reducer for your application, talk to a qualified manufacturer today.
Choosing a gear reducer for a gear motor can be tricky. The wrong one can ruin an entire machine, so it’s important to know the specifics. You must know the torque and speed requirements and choose a motor with the appropriate ratio. A gear reducer should also be compatible with the motor it’s intended for. In some cases, a smaller motor with a gear reducer will work better than a larger one.
Motor

Motor shaft

Proper alignment of the motor shaft can greatly improve the performance and life span of rotating devices. The proper alignment of motors and driven instruments enhances the transfer of energy from the motor to the instrument. Incorrect alignment leads to additional noise and vibration. It may also lead to premature failure of couplings and bearings. Misalignment also results in increased shaft and coupling temperatures. Hence, proper alignment is critical to improve the efficiency of the driven instrument.
When choosing the correct type of gear train for your motor, you need to consider its energy efficiency and the torque it can handle. A helical geared motor is more efficient for high output torque applications. Depending on the required speed and torque, you can choose between an in-line and a parallel helical geared motor. Both types of gears have their advantages and disadvantages. Spur gears are widespread. They are toothed and run parallel to the motor shaft.
A planetary gear motor can also have a linear output shaft. A stepping motor should not operate at too high current to prevent demagnetization, which will lead to step loss or torque drop. Ensure that the motor and gearbox output shafts are protected from external impacts. If the motor and gearbox are not protected against bumps, they may cause thread defects. Make sure that the motor shafts and rotors are protected from external impacts.
When choosing a metal for your gear motor’s motor shaft, you should consider the cost of hot-rolled bar stock. Its outer layers are more difficult to machine. This type of material contains residual stresses and other problems that make it difficult to machine. For these applications, you should choose a high-strength steel with hard outer layers. This type of steel is cheaper, but it also has size considerations. It’s best to test each material first to determine which one suits your needs.
In addition to reducing the speed of your device, a geared motor also minimizes the torque generated by your machine. It can be used with both AC and DC power. A high-quality gear motor is vital for stirring mechanisms and conveyor belts. However, you should choose a geared motor that uses high-grade gears and provides maximum efficiency. There are many types of planetary gear motors and gears on the market, and it’s important to choose the right one.
Motor

First stage gears

The first stage gears of a gear motor are the most important components of the entire device. The motor’s power transmission is 90% efficient, but there are many factors that can affect its performance. The gear ratios used should be high enough to handle the load, but not too high that they are limiting the motor’s speed. A gear motor should also have a healthy safety factor, and the lubricant must be sufficient to overcome any of these factors.
The transmission torque of the gear changes with its speed. The transmission torque at the input side of the gear decreases, transferring a small torque to the output side. The number of teeth and the pitch circle diameters can be used to calculate the torque. The first stage gears of gear motors can be categorized as spur gears, helical gears, or worm gears. These three types of gears have different torque capacities.
The first stage helical gear is the most important part of a gear motor. Its function is to transfer rotation from one gear to the other. Its output is the gearhead. The second stage gears are connected by a carrier. They work in tandem with the first stage gear to provide the output of the gearhead. Moreover, the first stage carrier rotates in the same direction as the input pinion.
Another important component is the output torque of the gearmotor. When choosing a gearmotor, consider the starting torque, running torque, output speed, overhung and shock loads, duty cycles, and more. It is crucial to choose a gearmotor with the right ratio for the application. By choosing the proper gearmotor, you will get maximum performance with minimal operating costs and increase plant productivity. For more information on first stage gears, check out our blog.
The first stage of a gear motor is composed of a set of fixed and rotating sprockets. The first stage of these gears acts as a drive gear. Its rotational mass is a limiting factor for torque. The second stage consists of a rotating shaft. This shaft rotates in the direction of the torque axis. It is also the limiting force for the motor’s torque.

China Custom Permanent Magnet 42mm DC planetary gear motor for power tools   motor efficiencyChina Custom Permanent Magnet 42mm DC planetary gear motor for power tools   motor efficiency
editor by CX 2023-04-28

China Custom 42mm High Torque Electric 1000rpm Brushed DC 12V Planetary Gear Motor with Break with Good quality

Product Description

BG 42ZYT DC Brushed Motor 
Environmental Conditons -20ºC~50ºC
Lnsulation Clase B
Protection class IP44
Noise ≤65dB
Number of phases Single 
Lifespan >1000h

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
 Voltage    Power  

  Speed  

 Torque    Current   Speed    Current   Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 42775-1 12 10.4 2430 0.04 1.3 3000 0.4  0.25 6.7
BG 42775-2 24 21.1 3850 0.05 1.25 4500 0.25  0.4 8.3
We can also customize products according to customer requirements .  

 Planetary Gear Motor Technical Data-BG
Ratio 10.2 19.2  26.9  188 264 721 669 1911
NO-load speed 1167 700 437 175 98 87.5 58 36
Rated speed(rpm) 1000 600 375 150 83 75 50 31
Rated torque 0.34 0.65 0.9 5.6 6 6 6 6

 

Established in 1994, HangZhou BG Motor Factory is a professional manufacturer of brushless DC motors, brushed DC motors, planetary gear motors, worm gear motors, Universal motors and AC motors. We have a plant area of 6000 square meters, multiple patent certificates, and we have the independent design and development capabilities and strong technical force, with an annual output of more than 1 million units. Since the beginning of its establishment, BG motor has focused on the overall solution of motors. We manufacture and design motors, provide professional customized services, respond quickly to customer needs, and actively help customers to solve problems. Our motor products are exported to 20 countries, including the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea etc.
Our founder, Mr. Sun, has more than 40 years of experience in motor technology, and our other engineers also have more than 15 years of experience, and 60% of our staff have more than 10 years of experience, and we can assure you that the quality of our motors is top notch.
The products cover AGV, underwater robots, robots, sewing machine industry, automobiles, medical equipment, automatic doors, lifting equipment, industrial equipment and have a wide range of applications.
We strive for CZPT in the quality of each product, and we are only a small and sophisticated manufacturer.
Our vision: Drive the world forward and make life better!

Q:1.What kind of motors can you provide?

A:At present, we mainly produce brushless DC motors, brush DC motors, AC motors, Universal Motors; the power of the motor is less than 5000W, and the diameter of the motor is not more than 200mm;

Q:2.Can you send me a price list?

A:For all of our motors, they are customized based on different requirements like lifetime, noise,voltage,and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3.Can l get some samples?

A:It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there are no further needs. If just sample testing before the official order and our MOQ,price and other terms are acceptable,we’d love to provide samples.

Q4:Can you provide OEM or ODM service?

A:Yes,OEM and ODM are both available, we have the professional R&D dept which can provide professional solutions for you.

Q5:Can l visit your factory before we place an order?

A:welcome to visit our factory,wear every pleased if we have the chance to know each other more.

Q:6.What’s the lead time for a regular order?

A:For orders, the standard lead time is 15-20 days and this time can be shorter or longer based on the different model,period and quantity.

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

The Benefits of Using a Gear Motor

A gear motor works on the principle of conservation of angular momentum. As the smaller gear covers more RPM and the larger gear produces more torque, the ratio between the two is greater than one. Similarly, a multiple gear motor follows the principle of energy conservation, with the direction of rotation always opposite to the one that is adjacent to it. It’s easy to understand the concept behind gear motors and the various types available. Read on to learn about the different types of gears and their applications.

Electric motor

The choice of an electric motor for gear motor is largely dependent on the application. There are various motor and gearhead combinations available, and some are more efficient than others. However, it is critical to understand the application requirements and select a motor that meets these needs. In this article, we’ll examine some of the benefits of using a gear motor. The pros and cons of each type are briefly discussed. You can buy new gear motors at competitive prices, but they aren’t the most reliable or durable option for your application.
To determine which motor is best for your application, you’ll need to consider the load and speed requirements. A gear motor’s efficiency (e) can be calculated by taking the input and output values and calculating their relation. On the graph below, the input (T) and output (P) values are represented as dashed lines. The input (I) value is represented as the torque applied to the motor shaft. The output (P) is the amount of mechanical energy converted. A DC gear motor is 70% efficient at 3.75 lb-in / 2,100 rpm.
In addition to the worm gear motor, you can also choose a compact DC worm gear motor with a variable gear ratio from 7.5 to 80. It has a range of options and can be custom-made for your specific application. The 3-phase AC gear motor, on the other hand, works at a rated power of one hp and torque of 1.143.2 kg-m. The output voltage is typically 220V.
Another important factor is the output shaft orientation. There are two main orientations for gearmotors: in-line and offset. In-line output shafts are most ideal for applications with high torque and short reduction ratios. If you want to avoid backlash, choose a right angle output shaft. An offset shaft can cause the output shaft to become excessively hot. If the output shaft is angled at a certain angle, it may be too large or too small.

Gear reducer

A gear reducer is a special kind of speed reducing motor, usually used in large machinery, such as compressors. These reducers have no cooling fan and are not designed to handle heavy loads. Different purposes require different service factors. For instance, a machine that requires frequent fast accelerations and occasional load spikes needs a gear reducer with a high service factor. A gear reducer that’s designed for long production shifts should be larger than a machine that uses it for short periods of time.
A gear reducer can reduce the speed of a motor by a factor of two. The reduction ratio changes the rotation speed of the receiving member. This change in speed is often required to solve problems of inertia mismatch. The torque density of a gear reducer is measured in newton meters and will depend on the motor used. The first criterion is the configuration of the input and output shafts. A gear ratio of 2:1, for example, means that the output speed has been cut in half.
Bevel gear reducers are a good option if the input and output shafts are perpendicular. This type is very robust and is perfect for situations where the angle between two axes is small. However, bevel gear reducers are expensive and require constant maintenance. They are usually used in heavy-duty conveyors and farm equipment. The correct choice of gear reducer for gear motor is crucial for the efficiency and reliability of the mechanism. To get the best gear reducer for your application, talk to a qualified manufacturer today.
Choosing a gear reducer for a gear motor can be tricky. The wrong one can ruin an entire machine, so it’s important to know the specifics. You must know the torque and speed requirements and choose a motor with the appropriate ratio. A gear reducer should also be compatible with the motor it’s intended for. In some cases, a smaller motor with a gear reducer will work better than a larger one.
Motor

Motor shaft

Proper alignment of the motor shaft can greatly improve the performance and life span of rotating devices. The proper alignment of motors and driven instruments enhances the transfer of energy from the motor to the instrument. Incorrect alignment leads to additional noise and vibration. It may also lead to premature failure of couplings and bearings. Misalignment also results in increased shaft and coupling temperatures. Hence, proper alignment is critical to improve the efficiency of the driven instrument.
When choosing the correct type of gear train for your motor, you need to consider its energy efficiency and the torque it can handle. A helical geared motor is more efficient for high output torque applications. Depending on the required speed and torque, you can choose between an in-line and a parallel helical geared motor. Both types of gears have their advantages and disadvantages. Spur gears are widespread. They are toothed and run parallel to the motor shaft.
A planetary gear motor can also have a linear output shaft. A stepping motor should not operate at too high current to prevent demagnetization, which will lead to step loss or torque drop. Ensure that the motor and gearbox output shafts are protected from external impacts. If the motor and gearbox are not protected against bumps, they may cause thread defects. Make sure that the motor shafts and rotors are protected from external impacts.
When choosing a metal for your gear motor’s motor shaft, you should consider the cost of hot-rolled bar stock. Its outer layers are more difficult to machine. This type of material contains residual stresses and other problems that make it difficult to machine. For these applications, you should choose a high-strength steel with hard outer layers. This type of steel is cheaper, but it also has size considerations. It’s best to test each material first to determine which one suits your needs.
In addition to reducing the speed of your device, a geared motor also minimizes the torque generated by your machine. It can be used with both AC and DC power. A high-quality gear motor is vital for stirring mechanisms and conveyor belts. However, you should choose a geared motor that uses high-grade gears and provides maximum efficiency. There are many types of planetary gear motors and gears on the market, and it’s important to choose the right one.
Motor

First stage gears

The first stage gears of a gear motor are the most important components of the entire device. The motor’s power transmission is 90% efficient, but there are many factors that can affect its performance. The gear ratios used should be high enough to handle the load, but not too high that they are limiting the motor’s speed. A gear motor should also have a healthy safety factor, and the lubricant must be sufficient to overcome any of these factors.
The transmission torque of the gear changes with its speed. The transmission torque at the input side of the gear decreases, transferring a small torque to the output side. The number of teeth and the pitch circle diameters can be used to calculate the torque. The first stage gears of gear motors can be categorized as spur gears, helical gears, or worm gears. These three types of gears have different torque capacities.
The first stage helical gear is the most important part of a gear motor. Its function is to transfer rotation from one gear to the other. Its output is the gearhead. The second stage gears are connected by a carrier. They work in tandem with the first stage gear to provide the output of the gearhead. Moreover, the first stage carrier rotates in the same direction as the input pinion.
Another important component is the output torque of the gearmotor. When choosing a gearmotor, consider the starting torque, running torque, output speed, overhung and shock loads, duty cycles, and more. It is crucial to choose a gearmotor with the right ratio for the application. By choosing the proper gearmotor, you will get maximum performance with minimal operating costs and increase plant productivity. For more information on first stage gears, check out our blog.
The first stage of a gear motor is composed of a set of fixed and rotating sprockets. The first stage of these gears acts as a drive gear. Its rotational mass is a limiting factor for torque. The second stage consists of a rotating shaft. This shaft rotates in the direction of the torque axis. It is also the limiting force for the motor’s torque.

China Custom 42mm High Torque Electric 1000rpm Brushed DC 12V Planetary Gear Motor with Break   with Good qualityChina Custom 42mm High Torque Electric 1000rpm Brushed DC 12V Planetary Gear Motor with Break   with Good quality
editor by CX 2023-04-24

China Custom High Torque P Series Planetary Gearbox Motor for Concrete Mixer motor driver

Product Description

Product Description

1.P series planetary gear reducer is widely used in metallurgy , mining, lifting and transport , electricity, energy , building

materials, light industry, transportation and other industrial sectors.

2. P series planetary gear involute planetary gear transmission , within a reasonable use, external gear , power split .

3. The planetary gear modular design changes can be combined according to customer requirements.

4.Carburized gears are used to obtain high- hard wear-resistant surface , all the heat treatment after grinding gear teeth ,
reduce noise , improve the overall efficiency and service life.

5. Hight quality gear reducer , small transmission ratio range , high efficiency, smooth operation, low noise adaptability and
other characteristics .

If you need to customize, please click here

Speed ratio range 

basic type 25 ~ 4000

 torque range

2.6 ~ 900knm

power range

22 ~ 1920kw

Installation form:

1. Horizontal installation / foot installation 2. Vertical installation / flange installation 3. Torsion arm installation.

Output mode

1. Hollow output shaft with shrink disc 2. Solid output shaft with flat key 3. Hollow shaft with involute spline 4. Solid shaft with involute spline

1 . Input: concentric shaft input , the helical gear input , bevel – helical gear input, bevel gear input.
2 . Output: the splined inner, hollow shaft shrink disc, splined outer, solid shaft flat key .
3.The planetary gear involute planetary gear transmission, within a reasonable use of external gear, power split. Therefore,light weight, small size, transmission ratio range, high efficiency, smooth operation, low noise, strong adaptability and other
characteristics.
4 . Box with ductile iron, greatly improving cabinet rigidity and shock resistance.
5 . Modular design , according to customer requirements to change the combination types .
6 . The installation forms : horizontal and vertical installation, torque arm mounting
7 . Combined with R series , K series to get greater ratio .

Detailed Photos

 

For more models or customization, please click here!

Click on the picture below for details

MOREPRODUCTS

 

 

 

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 1500/Piece
1 Piece(Min.Order)

|
Request Sample

Motor

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China Custom High Torque P Series Planetary Gearbox Motor for Concrete Mixer   motor driver	China Custom High Torque P Series Planetary Gearbox Motor for Concrete Mixer   motor driver
editor by CX 2023-04-20

China Custom High Torque 24V DC Planetary Gear Robot Motor 24V BLDC Motor with Hall Encoder dc motor

Product Description

 Custom High Torque 24V DC Planetary Gear Robot Motor 24V BLDC Motor with Hall Encoder
 
Model Number:KY80AS5714-15PGL60-10
Usage:Boat, Car, Fan
Certification:CE
Type:Servo Motor
Torque:22N.M
Construction:Permanent Magnet
Commutation:Brushless
Protect Feature:Drip-proof
Speed(RPM):150r/min
Continuous Current(A):22A
Output Power:400W
Voltage(V):24VDC
Efficiency:IE 1
Application:robot
Product Name:24v bldc motor with hall encoder
Motor type:BLDC MOTOR
Keywords:SERVO MOTOR
Rated Voltage:24VDC
Color:Black
Diameter:80MM
POWER:400W
Rated speed:1500 10%rpm
MOTOR TORQUE:2.55N.M

Product Description

 

Product Features:
*High Torque to inertia ratio&up to 15000Nm/kgm²
*Fast dynamic response *time constant <20ms
*Wide speed adjusting&feedback up to 1000:1
*Steady speed precision up to 0.5%
*High overload,2Mn/30s,3.5N.m/10s
*Small volume and light
*Silent,the lowest noise is only 45dB(A)
*Protected with IP65,Class F insulation
Industry class
1.The altitude should be over 1000 meters above sea level
2.Environment temperature:+5ºC~+40ºC
3.The month average tallest relative humidity is 90%,at the same the month average lowest temperature is less than 25ºC.

Parameters

 

Model

Volt

Power

Rated Torque

Rated Speed

Rated Current

Peak Torque

Encoder

Weight

Unit

V

W

Nm

r/min

A

Nm

P/R

kg

KY60AS5711-30

24

100

0.318

3000

5.4

0.95

2500

1.5

KY80AS5712-15

12

200

1.27

1500

22

3.8

2500

2.2

KY80AS5712-15

24/48

200

1.27

1500

9.4

3.8

2500

2.2

KY80AS5714-15

12

400

2.55

1500

44

7.65

2500

3.6

KY80AS5714-15

24/48

400

2.55

1500

21.3

7.65

2500

3.6

KY80AS5714-30

12

400

1.27

3000

44

3.8

2500

2.2

KY80AS5714-30

24/48

400

1.27

3000

18.8

3.8

2500

2.2

KY110AS0405-15

48

500

3.1

1500

14

10.8

2500

6

KY110AS5717-15

24

750

4.77

1500

41

16.6

2500

6

KY110AS0408-15

48

800

5

1500

22

17.9

2500

7.8

KY110AS5710-15

24

1000

6.3

1500

55

21.4

2500

7.8

KY110AS571-15

48

1000

6.3

1500

28

22

2500

7.8

KY110AS 0571 -12

48

1200

4.5

2500

33

15.7

2500

7.8

KY110AS571-15

48

1500

9.5

1500

37.5

28

2500

10

KY110AS0420-25

48

2000

7.6

2500

55

26

2500

10

KY130AS0430-15

48

3000

19

1500

73

57

2500

14

Gear ratio 1:7.5 1:10 1:15 1:20 1:25 1:30 1:40 1:50 1:60

 

 

To Be Negotiated 1 Piece
(Min. Order)

###

Application: Industrial
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control
Casing Protection: Protection Type
Number of Poles: 10

###

Samples:
US$ 285/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Model

Volt

Power

Rated Torque

Rated Speed

Rated Current

Peak Torque

Encoder

Weight

Unit

V

W

Nm

r/min

A

Nm

P/R

kg

KY60AS0201-30

24

100

0.318

3000

5.4

0.95

2500

1.5

KY80AS0102-15

12

200

1.27

1500

22

3.8

2500

2.2

KY80AS0202-15

24/48

200

1.27

1500

9.4

3.8

2500

2.2

KY80AS0104-15

12

400

2.55

1500

44

7.65

2500

3.6

KY80AS0204-15

24/48

400

2.55

1500

21.3

7.65

2500

3.6

KY80AS0104-30

12

400

1.27

3000

44

3.8

2500

2.2

KY80AS0204-30

24/48

400

1.27

3000

18.8

3.8

2500

2.2

KY110AS0405-15

48

500

3.1

1500

14

10.8

2500

6

KY110AS0207-15

24

750

4.77

1500

41

16.6

2500

6

KY110AS0408-15

48

800

5

1500

22

17.9

2500

7.8

KY110AS0210-15

24

1000

6.3

1500

55

21.4

2500

7.8

KY110AS0410-15

48

1000

6.3

1500

28

22

2500

7.8

KY110AS0412-12

48

1200

4.5

2500

33

15.7

2500

7.8

KY110AS0415-15

48

1500

9.5

1500

37.5

28

2500

10

KY110AS0420-25

48

2000

7.6

2500

55

26

2500

10

KY130AS0430-15

48

3000

19

1500

73

57

2500

14

###

Gear ratio 1:7.5 1:10 1:15 1:20 1:25 1:30 1:40 1:50 1:60
To Be Negotiated 1 Piece
(Min. Order)

###

Application: Industrial
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control
Casing Protection: Protection Type
Number of Poles: 10

###

Samples:
US$ 285/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Model

Volt

Power

Rated Torque

Rated Speed

Rated Current

Peak Torque

Encoder

Weight

Unit

V

W

Nm

r/min

A

Nm

P/R

kg

KY60AS0201-30

24

100

0.318

3000

5.4

0.95

2500

1.5

KY80AS0102-15

12

200

1.27

1500

22

3.8

2500

2.2

KY80AS0202-15

24/48

200

1.27

1500

9.4

3.8

2500

2.2

KY80AS0104-15

12

400

2.55

1500

44

7.65

2500

3.6

KY80AS0204-15

24/48

400

2.55

1500

21.3

7.65

2500

3.6

KY80AS0104-30

12

400

1.27

3000

44

3.8

2500

2.2

KY80AS0204-30

24/48

400

1.27

3000

18.8

3.8

2500

2.2

KY110AS0405-15

48

500

3.1

1500

14

10.8

2500

6

KY110AS0207-15

24

750

4.77

1500

41

16.6

2500

6

KY110AS0408-15

48

800

5

1500

22

17.9

2500

7.8

KY110AS0210-15

24

1000

6.3

1500

55

21.4

2500

7.8

KY110AS0410-15

48

1000

6.3

1500

28

22

2500

7.8

KY110AS0412-12

48

1200

4.5

2500

33

15.7

2500

7.8

KY110AS0415-15

48

1500

9.5

1500

37.5

28

2500

10

KY110AS0420-25

48

2000

7.6

2500

55

26

2500

10

KY130AS0430-15

48

3000

19

1500

73

57

2500

14

###

Gear ratio 1:7.5 1:10 1:15 1:20 1:25 1:30 1:40 1:50 1:60

The Benefits of Using a Gear Motor

A gear motor works on the principle of conservation of angular momentum. As the smaller gear covers more RPM and the larger gear produces more torque, the ratio between the two is greater than one. Similarly, a multiple gear motor follows the principle of energy conservation, with the direction of rotation always opposite to the one that is adjacent to it. It’s easy to understand the concept behind gear motors and the various types available. Read on to learn about the different types of gears and their applications.

Electric motor

The choice of an electric motor for gear motor is largely dependent on the application. There are various motor and gearhead combinations available, and some are more efficient than others. However, it is critical to understand the application requirements and select a motor that meets these needs. In this article, we’ll examine some of the benefits of using a gear motor. The pros and cons of each type are briefly discussed. You can buy new gear motors at competitive prices, but they aren’t the most reliable or durable option for your application.
To determine which motor is best for your application, you’ll need to consider the load and speed requirements. A gear motor’s efficiency (e) can be calculated by taking the input and output values and calculating their relation. On the graph below, the input (T) and output (P) values are represented as dashed lines. The input (I) value is represented as the torque applied to the motor shaft. The output (P) is the amount of mechanical energy converted. A DC gear motor is 70% efficient at 3.75 lb-in / 2,100 rpm.
In addition to the worm gear motor, you can also choose a compact DC worm gear motor with a variable gear ratio from 7.5 to 80. It has a range of options and can be custom-made for your specific application. The 3-phase AC gear motor, on the other hand, works at a rated power of one hp and torque of 1.143.2 kg-m. The output voltage is typically 220V.
Another important factor is the output shaft orientation. There are two main orientations for gearmotors: in-line and offset. In-line output shafts are most ideal for applications with high torque and short reduction ratios. If you want to avoid backlash, choose a right angle output shaft. An offset shaft can cause the output shaft to become excessively hot. If the output shaft is angled at a certain angle, it may be too large or too small.
Motor

Gear reducer

A gear reducer is a special kind of speed reducing motor, usually used in large machinery, such as compressors. These reducers have no cooling fan and are not designed to handle heavy loads. Different purposes require different service factors. For instance, a machine that requires frequent fast accelerations and occasional load spikes needs a gear reducer with a high service factor. A gear reducer that’s designed for long production shifts should be larger than a machine that uses it for short periods of time.
A gear reducer can reduce the speed of a motor by a factor of two. The reduction ratio changes the rotation speed of the receiving member. This change in speed is often required to solve problems of inertia mismatch. The torque density of a gear reducer is measured in newton meters and will depend on the motor used. The first criterion is the configuration of the input and output shafts. A gear ratio of 2:1, for example, means that the output speed has been cut in half.
Bevel gear reducers are a good option if the input and output shafts are perpendicular. This type is very robust and is perfect for situations where the angle between two axes is small. However, bevel gear reducers are expensive and require constant maintenance. They are usually used in heavy-duty conveyors and farm equipment. The correct choice of gear reducer for gear motor is crucial for the efficiency and reliability of the mechanism. To get the best gear reducer for your application, talk to a qualified manufacturer today.
Choosing a gear reducer for a gear motor can be tricky. The wrong one can ruin an entire machine, so it’s important to know the specifics. You must know the torque and speed requirements and choose a motor with the appropriate ratio. A gear reducer should also be compatible with the motor it’s intended for. In some cases, a smaller motor with a gear reducer will work better than a larger one.
Motor

Motor shaft

Proper alignment of the motor shaft can greatly improve the performance and life span of rotating devices. The proper alignment of motors and driven instruments enhances the transfer of energy from the motor to the instrument. Incorrect alignment leads to additional noise and vibration. It may also lead to premature failure of couplings and bearings. Misalignment also results in increased shaft and coupling temperatures. Hence, proper alignment is critical to improve the efficiency of the driven instrument.
When choosing the correct type of gear train for your motor, you need to consider its energy efficiency and the torque it can handle. A helical geared motor is more efficient for high output torque applications. Depending on the required speed and torque, you can choose between an in-line and a parallel helical geared motor. Both types of gears have their advantages and disadvantages. Spur gears are widespread. They are toothed and run parallel to the motor shaft.
A planetary gear motor can also have a linear output shaft. A stepping motor should not operate at too high current to prevent demagnetization, which will lead to step loss or torque drop. Ensure that the motor and gearbox output shafts are protected from external impacts. If the motor and gearbox are not protected against bumps, they may cause thread defects. Make sure that the motor shafts and rotors are protected from external impacts.
When choosing a metal for your gear motor’s motor shaft, you should consider the cost of hot-rolled bar stock. Its outer layers are more difficult to machine. This type of material contains residual stresses and other problems that make it difficult to machine. For these applications, you should choose a high-strength steel with hard outer layers. This type of steel is cheaper, but it also has size considerations. It’s best to test each material first to determine which one suits your needs.
In addition to reducing the speed of your device, a geared motor also minimizes the torque generated by your machine. It can be used with both AC and DC power. A high-quality gear motor is vital for stirring mechanisms and conveyor belts. However, you should choose a geared motor that uses high-grade gears and provides maximum efficiency. There are many types of planetary gear motors and gears on the market, and it’s important to choose the right one.
Motor

First stage gears

The first stage gears of a gear motor are the most important components of the entire device. The motor’s power transmission is 90% efficient, but there are many factors that can affect its performance. The gear ratios used should be high enough to handle the load, but not too high that they are limiting the motor’s speed. A gear motor should also have a healthy safety factor, and the lubricant must be sufficient to overcome any of these factors.
The transmission torque of the gear changes with its speed. The transmission torque at the input side of the gear decreases, transferring a small torque to the output side. The number of teeth and the pitch circle diameters can be used to calculate the torque. The first stage gears of gear motors can be categorized as spur gears, helical gears, or worm gears. These three types of gears have different torque capacities.
The first stage helical gear is the most important part of a gear motor. Its function is to transfer rotation from one gear to the other. Its output is the gearhead. The second stage gears are connected by a carrier. They work in tandem with the first stage gear to provide the output of the gearhead. Moreover, the first stage carrier rotates in the same direction as the input pinion.
Another important component is the output torque of the gearmotor. When choosing a gearmotor, consider the starting torque, running torque, output speed, overhung and shock loads, duty cycles, and more. It is crucial to choose a gearmotor with the right ratio for the application. By choosing the proper gearmotor, you will get maximum performance with minimal operating costs and increase plant productivity. For more information on first stage gears, check out our blog.
The first stage of a gear motor is composed of a set of fixed and rotating sprockets. The first stage of these gears acts as a drive gear. Its rotational mass is a limiting factor for torque. The second stage consists of a rotating shaft. This shaft rotates in the direction of the torque axis. It is also the limiting force for the motor’s torque.

China Custom High Torque 24V DC Planetary Gear Robot Motor 24V BLDC Motor with Hall Encoder     dc motor	China Custom High Torque 24V DC Planetary Gear Robot Motor 24V BLDC Motor with Hall Encoder     dc motor
editor by czh 2022-11-26

China Custom CZPT Ini CZPT Staffa Hmc030 Hmc045 Hmc080 Hmc125 Hmc200 Hmc270 Hmc325 Radial Piston Hydraulic Motor for Marine with Free Design Custom

Product Description

HangZhou High-Tech Zone CZPT International Trade Co., Ltd. is 1 of the largest hydraulic service provider and manufacturer in China.

We, CZPT company specialize in hydraulic field more than 15 years with professional team and experienced engineer. Our own 6 factories are in HangZhou, China. We warmly welcome well qualified buyers to visit our company for investigation so as to ensure long-term cooperation and large orders signing. Of course, we are also very welcome and support consultation and purchase from retailers regardless of the amount purchased.

Benefits of a Planetary Motor

If you’re looking for an affordable way to power a machine, consider purchasing a Planetary Motor. These units are designed to provide a massive range of gear reductions, and are capable of generating much higher torques and torque density than other types of drive systems. This article will explain why you should consider purchasing one for your needs. And we’ll also discuss the differences between a planetary and spur gear system, as well as how you can benefit from them.

planetary gears

Planetary gears in a motor are used to reduce the speed of rotation of the armature 8. The reduction ratio is determined by the structure of the planetary gear device. The output shaft 5 rotates through the device with the assistance of the ring gear 4. The ring gear 4 engages with the pinion 3 once the shaft is rotated to the engagement position. The transmission of rotational torque from the ring gear to the armature causes the motor to start.
The axial end surface of a planetary gear device has two circular grooves 21. The depressed portion is used to retain lubricant. This lubricant prevents foreign particles from entering the planetary gear space. This feature enables the planetary gear device to be compact and lightweight. The cylindrical portion also minimizes the mass inertia. In this way, the planetary gear device can be a good choice for a motor with limited space.
Because of their compact footprint, planetary gears are great for reducing heat. In addition, this design allows them to be cooled. If you need high speeds and sustained performance, you may want to consider using lubricants. The lubricants present a cooling effect and reduce noise and vibration. If you want to maximize the efficiency of your motor, invest in a planetary gear hub drivetrain.
The planetary gear head has an internal sun gear that drives the multiple outer gears. These gears mesh together with the outer ring that is fixed to the motor housing. In industrial applications, planetary gears are used with an increasing number of teeth. This distribution of power ensures higher efficiency and transmittable torque. There are many advantages of using a planetary gear motor. These advantages include:
Motor

planetary gearboxes

A planetary gearbox is a type of drivetrain in which the input and output shafts are connected with a planetary structure. A planetary gearset can have three main components: an input gear, a planetary output gear, and a stationary position. Different gears can be used to change the transmission ratios. The planetary structure arrangement gives the planetary gearset high rigidity and minimizes backlash. This high rigidity is crucial for quick start-stop cycles and rotational direction.
Planetary gears need to be lubricated regularly to prevent wear and tear. In addition, transmissions must be serviced regularly, which can include fluid changes. The gears in a planetary gearbox will wear out with time, and any problems should be repaired immediately. However, if the gears are damaged, or if they are faulty, a planetary gearbox manufacturer will repair it for free.
A planetary gearbox is typically a 2-speed design, but professional manufacturers can provide triple and single-speed sets. Planetary gearboxes are also compatible with hydraulic, electromagnetic, and dynamic braking systems. The first step to designing a planetary gearbox is defining your application and the desired outcome. Famous constructors use a consultative modeling approach, starting each project by studying machine torque and operating conditions.
As the planetary gearbox is a compact design, space is limited. Therefore, bearings need to be selected carefully. The compact needle roller bearings are the most common option, but they cannot tolerate large axial forces. Those that can handle high axial forces, such as worm gears, should opt for tapered roller bearings. So, what are the advantages and disadvantages of a helical gearbox?

planetary gear motors

When we think of planetary gear motors, we tend to think of large and powerful machines, but in fact, there are many smaller, more inexpensive versions of the same machine. These motors are often made of plastic, and can be as small as six millimeters in diameter. Unlike their larger counterparts, they have only one gear in the transmission, and are made with a small diameter and small number of teeth.
They are similar to the solar system, with the planets rotating around a sun gear. The planet pinions mesh with the ring gear inside the sun gear. All of these gears are connected by a planetary carrier, which is the output shaft of the gearbox. The ring gear and planetary carrier assembly are attached to each other through a series of joints. When power is applied to any of these members, the entire assembly will rotate.
Compared to other configurations, planetary gearmotors are more complicated. Their construction consists of a sun gear centered in the center and several smaller gears that mesh with the central sun gear. These gears are enclosed in a larger internal tooth gear. This design allows them to handle larger loads than conventional gear motors, as the load is distributed among several gears. This type of motor is typically more expensive than other configurations, but can withstand the higher-load requirements of some machines.
Because they are cylindrical in shape, planetary gear motors are incredibly versatile. They can be used in various applications, including automatic transmissions. They are also used in applications where high-precision and speed are necessary. Furthermore, the planetary gear motor is robust and is characterized by low vibrations. The advantages of using a planetary gear motor are vast and include:
Motor

planetary gears vs spur gears

A planetary motor uses multiple teeth to share the load of rotating parts. This gives planetary gears high stiffness and low backlash – often as low as one or two arc minutes. These characteristics are important for applications that undergo frequent start-stop cycles or rotational direction changes. This article discusses the benefits of planetary gears and how they differ from spur gears. You can watch the animation below for a clearer understanding of how they operate and how they differ from spur gears.
Planetary gears move in a periodic manner, with a relatively small meshing frequency. As the meshing frequency increases, the amplitude of the frequency also increases. The amplitude of this frequency is small at low clearance values, and increases dramatically at higher clearance levels. The amplitude of the frequency is higher when the clearance reaches 0.2-0.6. The amplitude increases rapidly, whereas wear increases slowly after the initial 0.2-0.6-inch-wide clearance.
In high-speed, high-torque applications, a planetary motor is more effective. It has multiple contact points for greater torque and higher speed. If you are not sure which type to choose, you can consult with an expert and design a custom gear. If you are unsure of what type of motor you need, contact Twirl Motor and ask for help choosing the right one for your application.
A planetary gear arrangement offers a number of advantages over traditional fixed-axis gear system designs. The compact size allows for lower loss of effectiveness, and the more planets in the gear system enhances the torque density and capacity. Another benefit of a planetary gear system is that it is much stronger and more durable than its spur-gear counterpart. Combined with its many advantages, a planetary gear arrangement offers a superior solution to your shifting needs.
Motor

planetary gearboxes as a compact alternative to pinion-and-gear reducers

While traditional pinion-and-gear reducer design is bulky and complex, planetary gearboxes are compact and flexible. They are suitable for many applications, especially where space and weight are issues, as well as torque and speed reduction. However, understanding their mechanism and working isn’t as simple as it sounds, so here are some of the key benefits of planetary gearing.
Planetary gearboxes work by using two planetary gears that rotate around their own axes. The sun gear is used as the input, while the planetary gears are connected via a casing. The ratio of these gears is -Ns/Np, with 24 teeth in the sun gear and -3/2 on the planet gear.
Unlike traditional pinion-and-gear reducer designs, planetary gearboxes are much smaller and less expensive. A planetary gearbox is about 50% smaller and weighs less than a pinion-and-gear reducer. The smaller gear floats on top of three large gears, minimizing the effects of vibration and ensuring consistent transmission over time.
Planetary gearboxes are a good alternative to pinion-and-gear drive systems because they are smaller, less complex and offer a higher reduction ratio. Their meshing arrangement is similar to the Milky Way, with the sun gear in the middle and two or more outer gears. They are connected by a carrier that sets their spacing and incorporates an output shaft.
Compared to pinion-and-gear reduces, planetary gearboxes offer higher speed reduction and torque capacity. As a result, planetary gearboxes are small and compact and are often preferred for space-constrained applications. But what about the high torque transfer? If you’re looking for a compact alt